
Cinema

debitCard

AccountBank
Client

+goCinema(cinema:String, startTime:Integer)

−debitCard:Integer

Ticket

−seat:Integer

*

*

−name: String

+buyTicket(startTime:Integer, amount:Integer): Boolean

*

*

−startTime:Integer

−endTime:Integer

−price:Integer

−capacity:Integer

Session

−balance:Integer
+pay(debitCard:Integer, amount:Integer): Boolean

Figure 1: Class diagram for the cinema example.

A simple UML model for a Ticket Sale System

We will show how to use the mOdCL evaluator by means of a simplified model
for a Tickets Sale System which includes its class diagram (with invariants and
pre- and post- conditions) and some object diagrams.

A Cinema has a name and offers a number of sessions, for which it sells tickets,
managing the payment through a single bank. A Session has a capacity, a
ticket price, start/finish times (startTime/endTime), and the tickets sold to
clients. A Client knows some cinemas, pays with a debitCard and has access
to the tickets he has bought. The association class Ticket represents a ticket
bought by a client for a given session; each ticket has a seat number. A Bank
knows the accounts that are associated with the debit cards, modeled as a
qualified association with the debitCard number as key. Each Account has a
balance.

The class diagram includes two invariants: the invariant avoid-overlapping
specifies that a client cannot buy two tickets for overlapping sessions.

context Cliente inv avoid-overlapping :

tickets -> forAll(T1 | tickets

-> forAll(T2 | (T1 = T2)

or (T1.session.endTime < T2.session.startTime)

or (T2.session.endTime < T1.session.startTime))))

an the invariant seats-in-session states that the number of tickets sold for a
session does not exceed its capacity.

context Session inv seats-in-session :

capacity >= tickets -> size()

The class diagram includes three public operations: goCinema, in the Client
class, allows a client to purchase a ticket for a given cinema, for a given time;
buyTicket, in the Cinema class, allows to buy one ticket for the session starting
at a given time; and pay, in the Bank class, charges a given amount to the
account associated to a given debitCard. The behavior of the operations is not
fully specified. It could be done, for example, by using sequence diagrams as we
show for the buyTicket operation in Figure 2

1



Figure 2: Class diagram for the cinema example.

Finally, we will illustrate the use of pre- and post- conditions of operations by
using the buyTicket operation. We impose as a precondition that the cinema
must offer a session at the time requested, and as a postcondition that the
returned value should be null or a new ticket, which in turn should be the only
ticket added to the tickets list of the requested session.

context Cinema::buyTicket(startTime:Integer,aClient:Client):Ticket

pre : sessions -> select(S | S.startTime = startTime)->size() = 1

post: (result = null)

or

-- tickets of the session must include the result ticket

(sessions -> select(S | S.startTime = startTime).tickets

-> includes(result)

and

-- the number of tickets increases in 1 unit

((sessions -> select(S |

S.startTime = startTime).tickets->asSet())

- (sessions -> select(S |

S.startTime = startTime).tickets@pre->asSet()))

->size() = 1)

1 Object diagrams

The object diagram represents a snapshot of the system state at a given time,
and is described with similar elements to those used for class diagrams, but
now the boxes refer to concrete instances of the classes which contains specific
values for their attributes and associations. An object diagram can be used, for

2



bob: Client

debitCard = 333

eve: Client

debitCard = 222

paul: Client

debitCard = 111

s2: Session

startTime = 1200

endTime = 1250

capacity = 10

price = 5

s3: Session

startTime = 1300

endTime = 1350

capacity = 10

price = 5

s1: Session

startTime = 1100

endTime = 1150

capacity = 10

price = 5

2: Ticket

seat = 1

3: Ticket

seat = 3

1: Ticket

seat = 1

cn: Cinema

acc1: Account

balance = 100

acc2: Account

balance = 1000

acc3: Account

balance = 10000

bbva: Bank

111

222

333

Figure 3: An objets diagram for the cinema example.

example, to describe situations which must fulfill given constraints, expressed
as OCL expressions.

For example, Figure 3 shows an object diagram of the cinema model, which
will be used to illustrate the use of mOdCL. In this diagram a cinema (cn) offers
three sessions (s1, s2 and s3), three active clientes (eve, bob and paul): eve
bought one ticket for the session s1 and paul bought two tickets for the sessions
s1 and s2.

3


