
A Maude Coherence Checker Tool for
Conditional Order-Sorted Rewrite Theories

(Long Version)?

Francisco Durán1 and José Meseguer2

1 Universidad de Málaga, Spain.
2 University of Illinois at Urbana-Champaign, IL, USA.

Abstract. For a rewrite theory to be executable, its equations E should
be (ground) confluent and terminating modulo the given axioms A, and
their rules should be (ground) coherent with E modulo A. The correct-
ness of many important formal verification tasks, including search, LTL
model checking, and the development of abstractions, crucially depends
on the theory being ground coherent. Furthermore, many specifications
of interest are typed, have equations E and rules R that are both con-
ditional, have axioms A involving various combinations of associativ-
ity, commutativity and identity, and may contain frozenness restrictions.
This makes it essential to extend the known coherence checking methods
from the untyped, unconditional, and AC or free case, to this much more
general setting. We present the mathematical foundations of the Maude
ChC 3 tool, which provide such a generalization to support coherence
and ground coherence checking for order-sorted rewrite theories under
these general assumptions. We also explain and illustrate the use of the
ChC 3 tool with a nontrivial example.

1 Introduction

Traditionally, a rewrite system is a set of directed equations used to compute
a value by repeatedly replacing subterms of a given formula with equal terms
until a (typically unique) simplest possible form is obtained. This interpretation
of a rewrite system gives an equational semantics to it, and a way of execut-
ing functional programs by rewriting. But rewriting is also useful for specifying
non-equational relations, such as transitions between states. Rewriting logic [20]
suggests keeping all rules with an equational interpretation as a distinguished set
E of equations, and considering the remaining rules R as defining state transition
steps over equivalence classes modulo E.

A rewriting logic signature is an equational specification. But, rewriting logic
is parameterized by the choice of its underlying equational logic. For example,
for Maude [3], the underlying equational logic is membership equational logic,
so that signatures are of the form (Ω,E), where Ω = (K,Σ, S) is a membership
equational logic signature and E is a set of (conditional) membership axioms
? A short version of this paper has been acepted for WRLA’10.



2

and equations. Such a signature (Ω,E) makes explicit the set of equations in
order to emphasize that rewriting will operate on congruence classes of terms
modulo E.

Thus, a rewrite theory has both rules and equations, so that rewriting is
performed modulo such equations. However, this does not mean that an imple-
mentation of rewriting logic must have an E-matching algorithm for each equa-
tional theory E that a user might specify, which is impossible, since matching
modulo an arbitrary theory is undecidable. What, e.g., Maude instead requires
for rewrite theories in system modules is that:

– The equations are divided into a set A of structural axioms, for which match-
ing algorithms exist and a set E of equations that are (ground) Church-
Rosser and terminating modulo A. For some equations E, termination mod-
ulo A can be checked using the Maude Termination Tool (MTT) [9, 5] and
the Church-Rosser property can be checked using a Church-Rosser checker
as the one presented in [15, 14, 5, 11].

– The rules R in the module are (ground) coherent [21, 24] with the equations
E modulo A. This means that appropriate critical pairs can be filled in be-
tween rules and equations, allowing us to intermix rewriting with rules and
rewriting with equations without losing completeness of rule computations
by failing to perform a rewrite that would have been possible before an equa-
tional deduction step was taken. In this way, we get the effect of rewriting
modulo E ∪A with just a matching algorithm for A. In particular, a simple
strategy available in these circumstances is to always reduce to canonical
form using E before applying any rule in R. This is precisely the strategy
adopted by the Maude interpreter.

Therefore, for computational purposes it becomes very important to know
whether a given Church-Rosser and terminating specification is indeed ground-
coherent. For this purpose, the coherence checking methods proposed by Viry [24],
although very useful when applicable, must be substantially generalized because:
(i) they are restricted to the AC or free cases; (ii) assume that both the equations
and the rules are unconditional; (iii) always require the very restrictive condi-
tion that the right-hand and left-hand sides of any equation are both linear;
and (iv) are untyped. Instead, what we need to handle for Maude specifications
are generalized rewrite theories R = (Σ,E ∪ A,R, φ) [2] such that: (i) have an
initial model semantics; (ii) the equations E and the rules R can both be condi-
tional ; (iii) Σ is typed (here we assume Σ order-sorted); (iv) the set A of axioms
may involve associativity and/or commutativity and/or identity axioms; and (v)
rewriting with rules is restricted by frozenness information φ.

At first sight, checking coherence under these more general conditions may
appear to be an even more challenging task than in the simpler situations con-
templated by Viry in [24]. However, as we show in this paper, some of these more
general conditions can make it much easier to check coherence. In particular:

(1) frozenness can eliminate many critical pairs and greatly reduce the linearity
requirements on variables of equations;



3

(2) order-sorted type structure can: (i) eliminate many critical pairs, (ii) further
relax linearity conditions on variables of equations, and (iii) eliminate many
problematic non-overlap situations between equations and rules;

(3) the initial model semantics substantially relaxes the coherence requirement
into a ground coherence one where: (i) unjoinable critical pairs can be shown
ground joinable if some equational theorem proving obligations can be dis-
charged; and (ii) by checking sufficient completeness of the equations with
respect to a constructor subsignature, defined function symbols can safely
be assumed to be frozen, which by (1) can further reduce the number of
critical pairs that need to be considered and the linearity requirements on
equations.

A further point to emphasize is that the present ChC tool can in principle
deal with any combination of associativity, commutativity, and identity axioms,
including the thorny cases of associativity without commutativity for which no
finitary unification algorithms exist. Although in general computing critical pairs
for the associativity without commutativity cases may not be possible, in many
practical cases our tool can show that the relevant left-hand sides have a finite
set of variants [6, 17] when associativity is used as a rule. This then allows
the application of a theory transformation described in [10] thanks to which
associativity without commutativity axioms need not be used when computing
critical pairs.

Our coherence checker tool (ChC) [13] is particularly well-suited for checking
Maude specifications with an initial model semantics whose equations E have
already been proved Church-Rosser and terminating modulo A, and now we
need to check that its rules R are ground-coherent with E modulo A, although
our methods can of course be used to check the coherence property of condi-
tional order-sorted specifications that do not have an initial model semantics,
such as, for example, those specified in Maude system theories [4]. Since, for
the reasons mentioned above, user interaction will typically be quite essential,
coherence completion is not attempted. Instead, if the specification cannot be
shown to be coherent or ground-coherent by the tool, proof obligations are gen-
erated and are given back to the user as a guide in the attempt to establish
the ground-coherence property. Since this property is in fact inductive, in some
cases the Maude inductive theorem prover can be enlisted to prove some of these
proof obligations. In other cases, the user may in fact have to modify the origi-
nal specification by carefully considering the information conveyed by the proof
obligations. We give in Section 3 some methodological guidelines for the use of
the tool, and illustrate the use of the tool with some examples.

The present ChC tool only accepts order-sorted conditional specifications,
where each of the operation symbols has either no equational attributes, or
any combination of associativity/commutativity/identity.3 Furthermore, it is as-
sumed that such specifications do not contain any built-in function, do not use
3 The associativity without commutativity case is handled using a semi-algorithm

proposed in [10], which works in many practical situations but not always. We refer
the reader to [10] for further details.



4

the owise attribute, and that they have already been proved Church-Rosser
and terminating. The tool attempts to establish the ground-coherence property
modulo the equational axioms specified for each of the operators by checking a
sufficient condition. Therefore, the tool’s output consists of a set of critical pairs
that the tool has not been able to join and must be shown ground-joinable.

As other tools in the Maude formal environment [5], the ChC tool has been
implemented as an extension of Full Maude [12, 7]. Details on how to extend
Full Maude in different forms can be found in, e.g., [16, 12, 7, 8]. Following these
techniques, the ChC has been integrated within the Full Maude environment, to
allow checking of modules defined in Full Maude and to get a much more conve-
nient user interface. Of course, it would have been possible to define an interface
for the tool without integrating it with Full Maude. Since all the infrastructure
built for Full Maude can be used by itself, just by selecting functions from that
infrastructure in the needed modules, any of the two possibilities can give rise to
an interface in a very short time. However, by integrating the specifications of
Full Maude and of the ChC we not only have such a needed infrastructure, but
in addition we can, for example, check the coherence property of any module in
Full Maude’s database. We can therefore use the tool on any module accepted
by Full Maude, including structured modules, parameterized modules, etc. We
still have, of course, the restrictions mentioned above.

The rest of the paper is structured as follows. Section 2 introduces the notion
of coherent order-sorted specification modulo axioms. Section 3 presents some
directions on how to use the tool and illustrates it with an example. Section 4
concludes and presents some future work. We assume that the reader is familiar
with basic rewriting terminology and notations. Although we have tried to make
the paper self contained, we refer the interested reader to [22] for additional
details.

2 Coherent Order-Sorted Specifications Modulo Axioms

2.1 Conditional rewriting modulo linear and regular axioms A

Given an order-sorted rewrite theory R = (Σ,A,R), where A is a collection of
unconditional equational axioms of the form u = v that are linear (no repeated
variables in either u or v), and regular (vars(u) = vars(v)), we define the relation
→R/A, either by the inference system of rewriting logic (see [2]), or by the usual
inductive description: →R/A=

⋃
n →R/A,n, where →R/A,0 = ∅, and for each

n ∈ N, we have →R/A,n+1 = →R/A,n ∪ {(u, v) | u =A lσ → rσ =A v ∧ l →
r if

∧
i ui → vi ∈ R ∧ ∀i, uiσ →∗R/A,n viσ}. In general, of course, given terms

t and t′ with sorts in the same connected component, the problem of whether
t→R/A t

′ holds is undecidable.
Even if there is an effective A-matching algorithm, the relation u →R/A v

still remains undecidable in general, since to see if u→R/A v involves searching
through the possibly infinite equivalence classes [u]A and [v]A to see whether an
A-match is found for a subterm of some u′ ∈ [u]A and the result of rewriting u′



5

belongs to the equivalence class [v]A. For this reason, a much simpler relation
→R,A is defined, which becomes decidable if an A-matching algorithm exists.
We define (see [23]) →R,A=

⋃
n →R,A,n where →R,A,0= ∅, and for each n ∈ N

and any terms u, v with sorts in the same connected component the relation
u →R,A,n+1 v holds if either u →R,A,n v, or there is a position p in u, a rule
l→ r if

∧
i ui → vi in R, and a substitution σ such that u|p =A lσ, v = u[rσ]p,

and ∀i, uiσ →∗R,A,n wi with wi =A viσ. Of course,→R,A⊆→R/A. The important
question is the completeness question: can any →R/A-step be simulated by a
→R,A-step? We say that R satisfies the A-completeness property if for any u, v
with sorts in the same connected component we have:

u
R/A

//

R,A
&&

v

A

v′

where here and in what follows dotted lines indicate existential quantification.

It is easy to check that A-completeness is equivalent to the following (strong)
A-coherence4 (or just coherence when A is understood) property:

u
R/A

//

A

v

A

u′
R,A

// v′

If a theory R is not coherent, we can try to make it so by completing the set
of rules R to a set of rules R̃ by a Knuth-Bendix-like completion procedure that
computes critical pairs between equations in A and rules in R (see, e.g., [19, 24]
for the strong coherence completion that we use here, and [18] for the equiva-
lent notion of extension completion). For theories A that are combinations of
associativity, commutativity, left identity, and right identity axioms, the coher-
ence completion procedure always terminates and has a very simple description
(see [23], and for a more informal explanation [4, Section 4.8]).

We say that R = (Σ,A,R) is A-confluent, resp. A-terminating, if the relation
→R/A is confluent, resp. terminating. If R is A-coherent, then A-confluence is

4 Note that the assumption of A being regular and linear is essential for one→R/A-step
to exactly correspond to one→R,A-step. For this reason, some authors (e.g., [19, 24])
call conditions as the one above strong coherence, and consider also weaker notions
of coherence.



6

equivalent to asserting that, for any t→∗R,A u, t→∗R,A v, we have:

t

R,A

∗
zzuuuuuuuuuu

∗
R,A $$IIIIIIIIII

u

∗
R,A $$

v

∗
R,Azz

w =A w
′

and A-termination is equivalent to the termination of the→R,A relation. In what
follows, given a rewrite theory R = (Σ,A,R), saying that R is A-coherent is
equivalent to saying that the rules R are A-coherent.

The fact that we are performing order-sorted rewriting makes one more re-
quirement necessary. When A-matching a subterm t|p against a rule’s left-hand
side to obtain a matching substitution σ, we need to check that σ is well-sorted,
that is, that if a variable x has sort s, then the term xσ has also sort s. This
may however fail to be the case even though there is a term w ∈ [xσ]A which
does have sort s. We call an order-sorted signature A-preregular if the set of
sorts {s ∈ S | ∀w ∈ TΣ(X ),∃w′ ∈ [w]A s.t. w′ ∈ TΣ(X )s} has a least upper
bound, denoted ls[w]A which can be effectively computed.5 Then we can check
the well-sortedness of the substitution σ not based on xσ above, but, implicitly,
on all the terms in [w]A.

Yet another property required for the good behavior of confluent and termi-
nating rewrite theories modulo A is their being A-sort-decreasing. This means
that R is A-preregular, and for each term t we have ls[t]A ≥ ls[t↓R]A.

From this, the following lemma follows.

Lemma 1. For R A-coherent rules, if t→R,A t
′, then

t
R,A

//

A

t′

A

u
R,A

// u′

Proof. Since t →R,A t′ implies t →R/A t′, and u =A t and t →R/A t′ imply
u→R/A t

′, we have

t
R,A//

A coher.

t′

A

u

R/A
88qqqqqqqqqqqqq

R,A
// u′

as desired. 2

5 The Maude system automatically checks the A-preregularity of a signature Σ for
A any combination of associativity, commutativity, left identity, and right identity
axioms (see [4, Chapter 22.2.5]).



7

As mentioned above, for →R,A to be decidable we need an A-matching algo-
rithm. Therefore, we will consider the set of equations to be a union E ∪A with
A a set of axioms for which there exists a matching algorithm (as associativity,
commutativity, and identity), and E the remaining equations.

2.2 Coherence of conditional rewrite theories

A rule l → un+1 if
∧
i=1..n ui → vi is said to be deterministic if ∀j ∈ [1..n],

Var(uj) ⊆ Var(l) ∪
⋃
k<j Var(vk). A conditional rewrite theory is deterministic

if each of its rules is deterministic. Given a rewrite theory R, a term t is called
strongly irreducible with respect to R modulo A (or strongly R,A-irreducible) if
tσ is a normal form for every normalized substitution σ. A rewrite theory R is
called strongly deterministic if for every rule l→ r if

∧
i=1..n ui → vi in R each

vi is strongly R,A-irreducible.
We assume an order-sorted rewrite theory of the form R = (Σ,E ∪A,R, φ),

where:

(1) φ is the frozenness information [2].
(2) (Σ,E ∪ A) is an order-sorted equational theory with possibly conditional

equations, which can be converted into a strongly deterministic rewrite the-
ory that is operationally terminating modulo A. Furthermore, the equations
E are confluent modulo A. Also, the axioms in A are a collection of regular
and linear unconditional equational axioms and are all at the kind level, i.e.,
each connected component in the poset (S,≤) of sorts has a top sort, and
the variables in the axioms A all have such top sorts.

(3) R is a collection of rewrite rules l → r if C, where C is an equational con-
dition, which again can be turned into a deterministic rewrite rule of the
form l → r if u1 →E v1 ∧ . . . ∧ un →E vn with the v1, . . . , vn strongly
E,A-irreducible.

(4) Both the equations E and the rulesR are A-coherent. Therefore, the relations
→R/A (resp. →E/A) and →R,A (resp. →E,A) essentially coincide.

Definition 1. A rewrite theory R = (Σ,E ∪ A,R, φ) satisfying (1)-(4) above
is called coherent (resp. ground coherent) iff for each Σ-term t (resp. ground
Σ-term t) such that t→E,A u, and t→R,A v we have

t
R,A

//
E,A ��

v

∗
E,A

&&
u

∗E,A ��

w
A

w′

u′
R,A

// u′′

∗

E,A

99
(C)

Likewise, R is called locally coherent (resp. ground locally coherent) iff for each
Σ-term t (resp. ground Σ-term t) such that t→E,A u, and t→R,A v we have



8

t
R,A

//
E,A ��

v

∗
E,A

&&
u

!E,A ��

w
A

w′

u′
R,A

// u′′

∗

E,A

99
(LC)

where s→!
E,A t if s→∗E,A t and t is E,A-irreducible.

Theorem 1. R is coherent (resp. ground coherent) iff R is locally coherent
(resp. locally ground coherent).

Proof. Obviously (LC)⇒ (C). Let us now prove that (C)⇒ (LC) by noetharian
induction on the terminating relation →E,A.

Let t be any term. If t = t↓E,A or t = t↓R,A both (C) and (LC) hold trivially.
Therefore, we may assume that t →E,A u and t →R,A v. By coherence we then
have:

t
R,A

//

E,A ��

v

∗
E,A

&&
u

∗ E,A��

w1

A

w′1

t1
R,A

// v1

∗

E,A

::

If t1 = t1↓E,A we are done, so we may assume that we have t1 →E,A u1 →∗E,A
u′1↓E,A. By noetherian induction on →E,A, t1 is (LC) and therefore we have:

t
R,A

//

E,A ��

v

∗ E,A
))

u

∗ E,A��

w1

A E,A

!
((

w′1

E,A

!
((

Lemma 1 w

A

t1
R,A

//

E,A ��

v1

∗

E,A

66

∗
E,A

((

confluence of →E,A w′

A

u1

! E,A��

w2

A

E,A
!

66

Lemma 1 w′′

w′2

E,A

! 66

u′
R,A

// u′′

∗

E,A

66



9

2

Since for all terms t, t is coherent iff t is locally coherent, we can approach
the verification of coherence for R as follows: We can reason by cases on the

situations
t

E,A ����
R,A��==

u v
depending on whether they are or not overlap

situations. For this we need the notion of a conditional critical pair, and the
notion of conditional critical pair joinability.

Definition 2. Given conditional rewrite rules with disjoint variables l→ r if C
in R and l′ → r′ if C ′ in E, their set of conditional critical pairs modulo A
is defined as usual: either we find a non-variable position p in l such that α ∈
UnifA(l|p, l′) and then we form the conditional critical pair

α(C) ∧ α(C ′) ⇒ α(l[l′]p)

E ��

A
α(l)

R
// α(r)

α(l[r′]p)

(I)

or we have a non-variable and nonfrozen position p′ in l′ such that α ∈ UnifA(l′|p′ , l)
and we form the conditional critical pair:

α(C) ∧ α(C ′) ⇒ α(l′)

E ��

A
α(l′[l]p′)

R
// α(l′[r]p′)

α(r′)

(II)

We typically write these critical pairs as α(C) ∧ α(C ′) ⇒ α(l[r′]p) → α(r) and
α(C) ∧ α(C ′)⇒ α(r′)→ α(l′[r]p′).

We say that a critical pair of type (I) is joinable iff for any substitution τ such
that E ∪A ` τα(C) ∧ τα(C ′) we then have

τ(α(l))
R,A

//

E,A ��

A

MMMMMMMMMM

MMMMMMMMMM
τ(α(r))

∗
E,A

##
τ(α(l[l′]p))

E,A ��

w

A

u
A

∗E,A ��

τ(α(l[r′]p))

∗E,A ��

w′

A

u′′′
R,A

// uiv

A

∗
E,A ;;

w′′

u′
A

pppppppppppp

pppppppppppp
R,A

// u′′

∗

E,A

;;



10

Of course, by (C)⇔ (LC) it is enough to make this check with u′′′ = u′′′↓E,A.

Similarly, we say that a critical pair of type (II) is joinable iff for any sub-
stitution τ such that E ∪A |− τα(C) ∧ τα(C ′) we then have

τ(α(l′))
R,A

//

E,A ��

A

MMMMMMMMMM

MMMMMMMMMM
v

A
∗

E,A
$$

τ(α(l′[l]p))
R,A

// τ(α(l′[r]p))

∗
E,A

$$

w

A

τ(α(r′))

∗E,A ��

w′

A

w′′

u′
R,A

// u′′

∗

E,A

99

where, again, by (C)⇔ (LC) it is enough to perform the check with u′ = u′↓E,A.

Of course, joinability of all conditional critical pairs is a necessary condition
for coherence. The challenge now is to find a set of sufficient conditions for
coherence that includes the joinability of conditional critical pairs.

Specifically, non-overlapping situations between equations and rules require
additional conditions. In the case of coherence checking, we need to worry about
non-overlapping of R under E, that is, for l′ →E r′ if C ′ in E and l →R r if C
in R we need to worry about situations of the form:

l′
x

l

��������������� ,,,,,,,,,,,,,,,

��������� ---------

����

���� ,,,,

,,,,
E

//

R ��

r′
��������������� ,,,,,,,,,,,,,,,

This case can be problematic in two related ways: (1) when l′ →E r′ if C ′

is unconditional but not linear, or (2) when l′ →E r′ if C ′ is conditional. The
problem with (1) is well-understood since [24]. The problem with (2) was also
mentioned by Viry in [24]; it has to do with the fact that the satisfiability of the
condition C ′ in an equation l′ →E r′ if C ′ depends on the substitution θ (may
hold or not depending on the given θ). But since R rewrites the substitution θ,



11

we do not know if C ′ will hold anymore after a one-step rewrite with the rule
l→R r if C.6

Theorem 2. Given R as above, then if:
(i) all conditional critical pairs are joinable and

(ii) for any equation l′ → r′ if C ′ in E, for each x ∈ Var(l′) such that x is
non-frozen in l′, then either
(a) x is such that x 6∈ vars(C ′), x is also non-frozen in r′, and x is linear

in both l′ and r′, or
(b) the sort s of x is such that no rewriting with→R,A is possible for terms

of such sort s,
then R is coherent.

Proof. Consider
t

E,A ������
R,A��>>>>

u v
. Then if neither p v q, nor q v p (disjoint

positions) we have that R is coherent since we have:

t
q p

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,
A

p

A
q

GF ED
p R,A

��

GF

@A

q

E,A

//

q p

l
θ

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,
R

p // q p

r

θ

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,

A
q

ED

BC

q

E,A

oo

q p

l′

θ′

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,

E
q

��

q p

l′

θ′
r

θ

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,

E
q

��

q p

r′

θ′

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,
A

p

@A BC
p R,A

OO

q p

r′

θ′
l
θ

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,
R

p // q p

r′

θ′
r

θ

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,

6 Note that we can view cases of unconditional l→ r with l non-linear as special cases
of (2), since we can linearize l, and give an explicit equality condition instead. E.g.,
x + x = x becomes x + y = x if x = y.



12

Therefore, the heart of the matter lies in the cases p v q and q v p. Let us first
consider the case p v q. Without loss of generality we may assume p = Λ (top
position). Therefore, for l→R r if C and l′ →E r′ if C ′ we have:

t
q

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$
A

Λ

q

E,A ��

l

θ

��������������� ,,,,,,,,,,,,,,,

R

Λ //

q′

E,A��

r

θ

��������������� ,,,,,,,,,,,,,,,

u
A

Lemma 1

u′

with E ∪A |− θ(C) and E ∪A |− θ′(C ′). Notice that we assume that C (and of
course C’) is an equational condition.

There are now two possibilities:

(a) (overlap case) q′ is a non-variable position of l.

(b) (non-overlap case) q′ is not a non-variable position of l.



13

Let us first show that the non overlap case is non-problematic:

t

��������������� ,,,,,,,,,,,,,,,

A

E,A ��

Lemma 1

θ

l
x1 xi xn
... ...
qi

��������������� ,,,,,,,,,,,,,,,

�������� ������� �������� ********

����� (((((

""""""" ,,,,,,,,

E∪A |− θ(C)

R,A
//

A
qi

r

x1 ... xn
...

��������������� ,,,,,,,,,,,,,,,

�������� ������� """"""" ,,,,,,,,

E,A ∗��

l
x1 xi xn

... ...
qi

l′

θ′
l′

θ′
l′

θ′

��������������� ,,,,,,,,,,,,,,,

���
����� !!!!! ����� ''''' ����� -----

+++

E,A
E∪A|−θ′(C′)

��
u

��

A
u′

E,A ∗��

l
x1 xi xn

... ...
r′

θ′
r′

θ′
r′

θ′

��������������� ,,,,,,,,,,,,,,,

���
����� !!!!! ����� ''''' ����� -----

+++ R,A

‡ //

r

x1 xi xn

... ...
r′

θ′
r′

θ′
r′

θ′

��������������� ,,,,,,,,,,,,,,,

���
����� !!!!! ����� ''''' ����� -----

+++

A

u′′

A

//

Lemma 1

Lemma 1

w

The rule application ‡ is possible because, by the assumption of E being confluent
modulo A, and C being equational, since θ =E∪A θ′ so θ↓E,A =A θ′↓E,A, and
therefore E ∪A|−θ(C) implies E ∪A|−θ′(C).



14

Therefore, we are only left with the overlap case, in which q is a non-variable
position in l. Therefore, we have the following situation.

t

��������������� ,,,,,,,,,,,,,,,

A

E,A ��

θ

l q

��������������� ,,,,,,,,,,,,,,,

���������� )))))))))) E∪A |− θ(C)

R
//

A

θ

r

��������������� ,,,,,,,,,,,,,,,

θ

l

θ′

l′

q

��������������� ,,,,,,,,,,,,,,,

���������� ))))))))))

E

E∪A |− θ′(C′)

��

= θ
+
∪θ′(l[l′]q)

u
A

θ′

r′

q

��������������� ,,,,,,,,,,,,,,,

���������� ))))))))))

= θ
+
∪θ′(l[r′]q)

Let us now look more carefully at θ and θ′. Let X0 = vars(l|p) ⊆ X and
X ′0 = vars(l′) ⊆ X ′, and let θ0 = θ|X0 and θ′0 = θ′|X′0 . We therefore have a

unifier θ0

+
∪ θ′0 (by X and X ′ disjoint) such that

(θ0

+
∪ θ′0)(l|p) =A (θ0

+
∪ θ′0)(l′),

and therefore we have α ∈ UnifA(l|p, l′) and τ0 such that τ0 ◦ α =A θ0

+
∪ θ′0.

Let us define τ̂ : (X ∪X ′) − (X0 ∪X ′0) → TΣ(X ) (with X an infinite set of
variables) by

τ̂(x) =

{
θ(x) if x ∈ X −X0

θ′(x) if x ∈ X ′ −X ′0

Then, since α = α|X0∪X′0 , we obviously have that for τ = τ0
+
∪ τ̂ the equality

τ ◦ α =A θ
+
∪ θ′

holds. Furthermore, since E ∪ A |− θ(C) ∧ θ′(C ′) and therefore E ∪ A |− θ
+
∪

θ′(C) ∧ θ
+
∪ θ′(C ′), we also have E ∪ A |− τ(α(C)) ∧ τ(α(C ′)). And by the



15

joinability assumption we then have:

t
A

E,A ��

Lemma 1

θ
+
∪ θ′(l) R

//

A

A
NNNNNNNNNNN

NNNNNNNNNNN
θ

+
∪ θ′(r) = v

Lemma 1

A E,A
((

τ(α(l))

joinability

R,A
//

A

τ(α(r))

∗
E,A

((

w

A

θ
+
∪ θ′(l[l′]q)

E,A��

A
τ(α(l[l′]q))

E,A��

w′

A

u
A

E,A ∗��

θ
+
∪ θ′(l[r′]q) A

τ(α(l[r′]q))

E,A ∗��

w′′

A

u′′
R,A

// uiv

A

∗
E,A

66

w′′′

u′

A

hhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhh
E,A

//

Lemma 1

u′′

∗
E,A

55Lemma 1

as desired.

Therefore, the only problematic case is that of p v q. Again, we can consider
two subcases, an overlap subcase, and a non-overlap subcase. The proof of the



16

overlap subcase is given by the following diagram:

t

��������������� ,,,,,,,,,,,,,,,

A

R,A
//

Lemma 1

v

A

E,A ∗��

θ′

l′ p

��������������� ,,,,,,,,,,,,,,,

���������� ))))))))))

θ
+
∪θ′(l′) =

E

E∪A |− θ′(C′)

��

A

p

A========

========

θ′

l′

θ

l

p

��������������� ,,,,,,,,,,,,,,,

���������� )))))))))) E∪A |− θ(C)

R
//

||
θ∪θ′(l′[l]p)

A

θ′

l′

θ

r

p

��������������� ,,,,,,,,,,,,,,,

���������� ))))))))))

A

θ
+
∪θ′(l′[r]p)
//

w0Lemma 1

τ(α(l′))

E ��

A
τ(α(l′[l]p))

R
// τ(α(l′[r]p))

E,A

∗ // w

A

A

θ′

r′

��������������� ,,,,,,,,,,,,,,,

u = θ
+
∪θ′(r′) =

A

E,A ∗��

τ(α(r′))

E,A ∗��

w′

u′′
A

R,A
//

u′
R,A

//

Lemma 1

Lemma 1

joinability

v′′

A

E,A
∗
CC

w′′

A

u′′′

E,A

∗ ::

Lemma 1



17

The only case left is the non-overlap case with p v q, where we have:

t

��������������� ,,,,,,,,,,,,,,,

R,A
//

A

v

A

l′

θ′

x

p

��������������� ,,,,,,,,,,,,,,,

��������� ---------

����

���� ,,,,

,,,,
A

p

E ��

l′
x

p

l
θ

��������������� ,,,,,,,,,,,,,,,

��������� ---------

����

���� ,,,,

,,,,

E∪A |− θ(C)

R
//

l′
x

p

r

θ

��������������� ,,,,,,,,,,,,,,,

��������� ---------

����

���� ,,,,

,,,,

u
A

r′

θ′

��������������� ,,,,,,,,,,,,,,,

Note that for this to happen, x must be a non-frozen variable in l′. If x
disappears from r′, or appears more than once in r′, the situation is hopeless
(no single rewrite with R possible). Similarly, if x appears more than once in l′,
the situation is likewise hopeless, since the patterns l′ will not match the term
θ′(l′)[θ(r)]p (the other subterms under x will be different!).

Let us proof that condition (ii) is enough. Case (ii).(b) makes the very pos-
sibility of a non-overlap case with R below E impossible, so let us consider case



18

(ii).(a):

t

��������������� ,,,,,,,,,,,,,,,

R,A
//

A

v

A

l′

θ

x

p

��������������� ,,,,,,,,,,,,,,,

��������� ---------

����

���� ,,,,

,,,,
A

p

E
E∪A |− θ(C′)

��

l′
x

p

l
θ′

��������������� ,,,,,,,,,,,,,,,

��������� ---------

����

���� ,,,,

,,,,
R

p //

E ��

l′
x

p

rθ′′

��������������� ,,,,,,,,,,,,,,,

��������� ---------

����

���� ,,,,

,,,,

E
E∪A |− θ′′(C′)

��

r′

θ

x

p

��������������� ,,,,,,,,,,,,,,,

��������� ---------

����

���� ,,,,

,,,,
A

p

@A
p R,A

//

r′
x

p

l
θ′

��������������� ,,,,,,,,,,,,,,,

��������� ---------

����

���� ,,,,

,,,,
R

p //

r′
x

p

rθ′′

��������������� ,,,,,,,,,,,,,,,

��������� ---------

����

���� ,,,,

,,,,

A

u

as desired. Notice that E ∪ A |− θ(C ′) implies E ∪ A |− θ′′(C ′) because θ =A θ
′

and θ′′(C ′) = θ′(C ′) since x 6∈ Var(C ′). 2

Condition (ii)-(b) of Theorem 2 requires a fixpoint calculation. An algorithm
that checks that situations where a non-frozen variable x in a left-hand side of
an equation fails to satisfy (ii)-(a) or (ii)-(b) is impossible is provided in [13].

2.3 Context-joinability and unfeasibility of conditional critical pairs

From those conditional critical pairs which cannot be joined, the tool can cur-
rently automatically discard those that are context-joinable or unfeasible, based
on a result by Avenhaus and Loŕıa-Sáenz [1], which we generalize here to the
order-sorted case and modulo A. Let us first introduce some notation.

Let a context C = {u1 →E v1, . . . , un →E vn} be a set of oriented equations.
We denote by C the result of replacing each variable x by a new constant x, and
X is the set of such new constants. Given a term t, t results from replacing each
variable x ∈ Var(C) by the constant x.



19

We denote by � the proper subterm relation. Then, given an order �, we
denote by �st = (� ∪ �)+ the smallest ordering that contains � and �. A
partial ordering � on TΣ(X ) is well founded if there is no infinite sequence
t0 � t1 � . . .. A partial ordering � is compatible with substitutions if u � u′

implies uσ � u′σ for any substitution σ. A partial ordering � is compatible with
the term structure if u � u′ implies t[u]p � t[u′]p for any term t and position p
in t. A partial ordering � is compatible with the axioms A if v =A u � u′ =A v

′

implies v � v′ for all terms u, u′, v, and v′ in TΣ(X ). A partial ordering � is
A-compatible if it is compatible with substitutions, compatible with the term
structure, and compatible with the axioms A. Then, a reduction ordering is a
partial ordering that is well founded and A-compatible.

A deterministic rewrite theoryR is quasi-reductive w.r.t. a reduction ordering
� on TΣ(X ) if for every substitution σ, every rule l → un+1 if u1 → v1 ∧ . . . ∧
un → vn in R , and every i ∈ [1..n], ujσ � vjσ for every j ∈ [1..i] implies
lσ �st ui+1σ.

Definition 3. Let E be an order-sorted deterministic term rewrite systems that
is quasi-reductive modulo A w.r.t. an A-compatible order �, and let C ⇒ s→ t be
a conditional critical pair resulting from l → r if C1 in R and l′ → r′ if C2

in E, and σ ∈ UnifA(l|p, l′) (resp. σ ∈ UnifA(l′|q, l)). We call C ⇒ s → t
unfeasible if there are terms t0, t1, t2 such that σ(l) �st t0 (resp. σ(l′) �st t0),
t0 →∗E∪C,A t1, t0 →∗E∪C,A t2, and t1, t2 are not unifyable and strongly E∪C,A-
irreducible.

A Maude order-sorted conditional specification can be converted into an
order-sorted deterministic rewrite theory with a simple procedure (see, e.g., [13]).
Maude checks that the conditional equational specifications entered are deter-
ministic (c.f. [4]), and we assume it is operationally terminating, and therefore
there exists a well-founded A-compatible order �st such that we can use the
results in [1] and their extension to the Maude case [15], to discard those condi-
tional critical pairs generated that are unfeasible.

Definition 4. Given a rewrite theory R = (Σ,E ∪ A,R), a non-joinable con-
ditional critical pair C ⇒ u → v (coming from a conditional critical pair C ⇒

t
E,A ����

R,A��==

u v
) is context-joinable if and only if in the extended rewrite theory



20

RC = (Σ ∪X,E ∪ C ∪A,R) we have:

u

!E∪C,A ��

v

∗
E∪C,A
!!
w

A

w′

u′ R,A
// u′′

∗

E∪C,A

>>

Lemma 2. If the conditional critical pair C ⇒ u → v is context joinable, then
for all substitutions σ such that σC holds we have

σu

∗E∪C,A ��

σv

∗
E∪C,A

##
σw

A

σw′

σu′
R,A

// σu′′

∗

E∪C,A

<<

and therefore, the coherence property holds for the conditional critical pair C ⇒
t

E,A ����
R,A��==

u v
.

Proof. By [1, Lemma 4.2], since σC holds, we have σu→∗E,A σu′, σv →∗E,A σw,
and σu′′ →∗E,A σw. But we also have u′ →1

R,A u
′′, where u′ is in E∪C-canonical

form. This means that if we applied l→ r if D in R to u′ with substitution α and
D = u1 →E v1 ∧ . . .∧un →E vn then αu1 →∗E∪C,A αv1 ∧ . . .∧αun →∗E∪C,A αvn
holds, which means that (by [1, Lemma 4.2]), since σC holds we have σαu1 →∗E,A
σαv1 ∧ . . . ∧ σαun →∗E,A σαvn. Therefore, we have

σu

∗E,A ��

σv

∗
E,A

''
σw
A

σw′

σu′
R,A

// σu′′

∗

E,A

88

as desired. 2



21

2.4 The ground coherence case

Assume that Σ has a sub-signature of constructors Ω that has been verified to
be sufficiently complete with respect to the equations E modulo A. Then, we
can view each f ∈ Σ with a different syntactic form from Ω as a frozen operator,
since any ground term in E,A-canonical form will not contain the symbol f . This
automatically excludes all problematic non-overlaps with R below E except for:

(i) constructor equations, and
(ii) equations f(t1, . . . , tn) → r if C in E with f ∈ Σ − Ω, and with f having

the identity, left identity, or right identity attributes, and such that the left-
hand side of the equation resulting from the variant-based transformation to
remove the identity attributes has a non-frozen variable (see [10] for details
on the variant-based transformation).

Therefore, for ground coherence under the assumption of frozenness of defined
symbols, we only have to check condition (ii) in Theorem 2 on equations of types
(i) and (ii) above.

Furthermore, for those conditional critical pairs for which we have not been
able to check context joinability, we can guarantee their inductive ground join-
ability if for w = u↓E,A and for each rule (∀Y )λ : l → r if C in R such that in
the theory

R̃
α(C),α(C′)

= (Σ∪X∪Y0,λ, A,E∪α(C)∪α(C ′), {l→ rY0,λ | λ : l→ r if C in R})

where Y0,λ = Var(r)−Var(l) for a rule λ : l→ r if C in R, and rY0,λ denotes the
term r with all variables in Y0,λ are made constants, we can prove w →1

R,A v
′
i for

some substitution θi for the variables of l→ r for some such rule. Then inductive
ground joinability amounts to proving the inductive theorem:

E ∪A |−ind (α(C) ∧ α(C ′))⇒ (θ1C1 ∧ v1 = v) ∨ . . . ∨ (θnCn ∧ vn = v).

3 How to Use the Maude Coherence Checker

This section illustrates the use of the Maude coherence checker tool, and suggests
some methods that—using the feedback provided by the tool—can help the user
establish that his/her specification is ground-coherent.

We assume a context of use in which the user has already developed an exe-
cutable specification of his/her intended system with an initial model semantics,
and that this specification has already been checked to have confluent and ter-
minating equations and to have been tested with examples, so that the user is in
fact confident that the specification is ground-coherent, and wants only to check
this property with the tool.

Of course, the tool can only guarantee success when the user’s specification
is unconditional and coherent, and not just ground-coherent. That is, not gen-
erating any proof obligations is only a sufficient condition. But in some cases of



22

interest the specification may be ground coherent, but not coherent, so that a
collection of critical pairs will be returned by the tool as proof obligations.

An important methodological question is what to do, or not do, with these
proof obligations. What should not be done is to let an automatic completion
process add new rules to the user’s specification in a mindless way. In many cases
this will certainly lead to a nonterminating process. In any case, it will modify
the user’s specification in ways that can make it difficult for the user to recognize
the final result, if any, as intuitively equivalent to the original specification.

The feedback of the tool should instead be used as a guide for careful analysis
about one’s specification. By analyzing the critical pairs returned, the user can
understand why they could not be joined. In any case, it is the user himself/her-
self who must study where the coherence problems come from, and how to fix
them by modifying the specification. Interaction with the tool then provides a
way of modifying the original specification and ascertaining whether the new
version passes the test or is a good step towards that goal.

We present in the following section a simple example that illustrates the
use of the tool for different combinations of the associativity, commutativity,
and identity axioms. The interested reader can find in [14] additional examples
in which conditional equations and rules are used, cases in which conditional
critical pairs are discarded using inductive proofs, etc.

3.1 An unordered communication channel

Consider a communication channel in which messages can get out of order. There
is a sender and a receiver. The sender is sending a sequence of data items, for
example numbers. The receiver is supposed to get the sequence in the exact
same order in which they were in the sender’s sequence. To achieve this in-order
communication in spite of the unordered nature of the channel, the sender sends
each data item in a message together with a sequence number; and the receiver
sends back an ack message indicating that has received the item. The Full Maude
specification of the protocol is as follows:
(mod UNORDERED−CHANNEL i s

sorts Nat NatList Msg Conf State .
subsort Msg < Conf .
op 0 : −> Nat [ ctor ] .
op s : Nat −> Nat [ ctor ] .
op nil : −> NatList [ ctor ] .
op _ ; _ : Nat NatList −> NatList [ ctor ] . ∗∗∗ list constructor
op _@_ : NatList NatList −> NatList . ∗∗∗ list append
op ‘ [ _ ‘ , _ ‘ ] : Nat Nat −> Msg [ ctor ] .
op ack : Nat −> Msg [ ctor ] .
op null : −> Conf [ ctor ] .
op __ : Conf Conf −> Conf [ ctor assoc comm id : null ] .
op ‘{ _ ‘ , _ | _ | _ ‘ , _ ‘} : NatList Nat Conf NatList Nat −> State [ ctor ] .

vars N M J K : Nat . var C : Conf .
vars L P Q : NatList .

eq nil @ L = L . eq ( N ; L ) @ P = N ; ( L @ P ) .

r l [ snd ] : {N ; L , M | C | P , K} => {N ; L , M | [ N , M ] C | P , K} .
r l [ rec ] : {L , M | [ N , J ] C | P , J}



23

=> {L , M | ack ( J ) C | P @ ( N ; nil ) , s ( J )} .
r l [ rec−ack ] : {N ; L , J | ack ( J ) C | P , M} => {L , s ( J ) | C | P , M} .

endm)

The contents of the unordered channel is modeled as a multiset of messages
of sort Conf. The entire system state, involving the sender, the channel, and the
receiver is a 5-tuple of sort State, where the components are:

– a buffer for the sender containing the current list of items to be sent,
– a counter for the sender keeping track of the sequence number for items to

be sent,
– the contents of the unordered channel,
– a buffer for the receiver storing the sequence of items already received, and
– a counter for the receiver keeping track of the sequence number for items

received.

One essential property of this protocol is of course that it achieves in-order
communication in spite of the unordered communication medium. We can specify
this in-order communication property as an invariant in Maude. We will assume
that all initial states are of the form:
{n1 ; . . . ; nk ; nil , 0 | null | nil , 0}

That is, the sender’s buffer contains a list of numbers n1 ; ... ; nk ; nil
and has the counter set to 0, the channel is empty, and the receiver’s buffer is
also empty. Also, the receiver’s counter is initially set to 0.

In specifying the invariant, the auxiliary notion of a list prefix may be useful.
Given lists L and L′ we say that L is a prefix of L′ iff either: (1) L = L′, or (2)
there is a nonempty list L′′ such that L @ L′′ = L′.

(mod UNORDERED−CHANNEL−INVARIANT i s inc UNORDERED−CHANNEL .
sort Truth .
ops tt ff : −> Truth [ ctor ] .
op _˜_ : Nat Nat −> Truth [ comm ] . ∗∗∗ equality predicate
op _and_ : Truth Truth −> Truth [ assoc comm id : tt ] .

vars M N K : Nat . var C : Conf .
vars L L ’ L ’ ’ : NatList . var B : Truth .

eq 0 ˜ 0 = tt .
eq 0 ˜ s ( N ) = ff .
eq s ( N ) ˜ s ( M ) = N ˜ N .
eq ff and ff = ff .

op prefix : NatList State −> Truth .
eq [ I1 ] : prefix ( M ; L , {L ’ , N | C | K ; L ’ ’ , K })

= ( M ˜ K ) and prefix ( L , {L ’ , N | C | L ’ ’ , K }) .
eq [ I3 ] : prefix ( L , {L , N | C | nil , K }) = tt .
eq [ I4 ] : prefix ( nil , {L ’ , N | C | M ; L ’ ’ , K }) = ff .

endm)

The equational part of the specification can be checked terminating and
Church-Rosser using the MTT [9] and the CRC [14]. And the rules can be
shown to be ground coherent with the equations by using the ChC tool.
Maude> ( check ground coherence . )

Coherence checking of UNORDERED−CHANNEL



24

Coherence checking solution :
All critical pairs have been rewritten and all equations are non−

↪→constructor .
The specification i s ground coherent .

The problem with this simple example is that one cannot verify the invariant
using the search command in Maude, because, due to the snd rule, the number
of messages that can be present in the channel is unbounded, so that there is an
infinite number of reachable states. One should therefore use an abstraction.
(mod UNORDERED−CHANNEL−ABSTRACTION i s

pr UNORDERED−CHANNEL−INVARIANT .
vars M N P K : Nat .
vars L L ’ L ’ ’ : NatList .
var C : Conf .

eq [ A1 ] : {L , M | [ N , P ] [ N , P ] C | L ’ , K}
= {L , M | [ N , P ] C | L ’ , K} .

endm)

There are of course several key properties that such an abstraction should
satisfy:

(1) the set of states reachable from any initial state should be finite,
(2) the equational theory should be confluent and terminating,
(3) the rules should be coherent with the equations, and
(4) the abstraction should preserve the invariant.

Properties (1), (2) and (4) can easily be checked. For (3) we can use the ChC.
Maude> ( check ground coherence . )

Coherence checking of UNORDERED−CHANNEL−ABSTRACTION
Coherence checking solution :
The following critical pairs cannot be rewritten :

cp for A1 and rec
{L : NatList , M : Nat | #3: Conf [ N : Nat , J : Nat ] | P : NatList , J : Nat}
=> {L : NatList , M : Nat | #3: Conf ack ( J : Nat ) [ N : Nat , J : Nat ]

| P : NatList ; N : Nat , s ( J : Nat ) } .
cp for A1 and rec
{L : NatList , M : Nat | [ N : Nat , J : Nat ] | P : NatList , J : Nat}
=> {L : NatList , M : Nat | ack ( J : Nat ) [ N : Nat , J : Nat ]

| P : NatList ; N : Nat , s ( J : Nat ) } .

These critical pairs indicate that a rule is missing. We can add the rule:
(mod UNORDERED−CHANNEL−ABSTRACTION−2 i s

inc UNORDERED−CHANNEL−ABSTRACTION .
vars M N K : Nat . vars L L ’ : NatList . var C : Conf .

r l [ rec2 ] : {L , M | [ N , K ] C | L ’ , K}
=> {L , M | [ N , K ] ack ( K ) C | L ’ ; N , s ( K )} .

endm)

After checking properties (1), (2) and (4) above, we can check also he coher-
ence of the specification.
Maude> ( check ground coherence . )

Coherence checking of UNORDERED−CHANNEL−ABSTRACTION−2
Coherence checking solution :
All critical pairs have been rewritten , and no rule can be applied
below non−frozen and non−linear variables of equations .



25

4 Conclusions and Future Work

We have presented the theoretical foundations and design of the Maude Coher-
ence Checker. This tool addresses an important need of rewriting logic spec-
ifications, namely, checking coherence and ground coherence for very general
order-sorted rewrite theories whose equations and rules can be conditional and
can be applied modulo various combinations of associativity and/or commuta-
tivity and/or identity axioms, and whose operators may have frozenness restric-
tions. As we have shown, some of these more general requirements, plus the
initial model semantics of rewrite theories, can make it in fact easier to check
coherence and ground coherence than in the much more restrictive untyped, un-
conditional, and unfrozen case considered by Viry [24]. The tool, together with
its documentation, is available at http://maude.lcc.uma.es/CRChC.

More work remains ahead. Firstly, we would like to remove the current re-
strictions of the tool. Another important issue is that of formal tool integration.
The ChC and the CRC are already integrated within a single tool; but as we
have explained, the checking of ground coherence can generate inductive equa-
tional goals that should be discharged by the Maude ITP. Therefore, a closer
integration between the ChC and the ITP would be highly desirable.

Acknowledgements. F. Durán was supported by Spanish Research Projects TIN2008-

03107 and P07-TIC-03184. J. Meseguer was partially supported by NSF Grants CCF-

0905584, CNS-07-16038, CNS-09-04749, and CNS-08-34709.

References

1. J. Avenhaus and C. Loŕıa-Sáenz. On conditional rewrite systems with extra vari-
ables and deterministic logic programs. In F. Pfenning, ed., Logic Programming
and Automated Reasoning, 5th Intl. Conference, LPAR 1994, Proceedings, vol. 822
of Lecture Notes in Computer Science, pages 215–229. Springer, 1994.

2. R. Bruni and J. Meseguer. Semantic foundations for generalized rewrite theories.
Theoretical Computer Science, 351(1):286–414, 2006.

3. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: Specification and programming in rewriting logic. Theoretical Com-
puter Science, 285:187–243, 2002.

4. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. All About Maude—A High-Performance Logical Framework, vol. 4350 of
Lecture Notes in Computer Science. Springer, 2007.

5. M. Clavel, F. Durán, J. Hendrix, S. Lucas, J. Meseguer, and P. Ölveczky. The
Maude formal tool environment. In T. Mossakowski, U. Montanari, and M. Hav-
eraaen, eds., Algebra and Coalgebra in Computer Science, Procs. of CALCO 2007,
vol. 4624 of Lecture Notes in Computer Science, pages 173–178. Springer, 2007.

6. H. Comon-Lundh and S. Delaune. The finite variant property: How to get rid of
some algebraic properties. In J. Giesl, ed., Term Rewriting and Applications, 16th
Intl. Conference, RTA 2005, Proceedings, vol. 3467 of Lecture Notes in Computer
Science, pages 294–307. Springer, 2005.

7. F. Durán. A Reflective Module Algebra with Applications to the Maude Language.
PhD thesis, U. de Málaga, Spain, June 1999. http://maude.csl.sri.com/papers.



26

8. F. Durán. The extensibility of Maude’s module algebra. In T. Rus, ed., Algebraic
Methodology and Software Technology, Procs. of AMAST 2000, vol. 1816 of Lecture
Notes in Computer Science, pages 422–437. Springer, 2000.

9. F. Durán, S. Lucas, and J. Meseguer. MTT: The Maude termination tool (system
description). In A. Armando, P. Baumgartner, and G. Dowek, eds., Automated
Reasoning 4th Intl. Joint Conference, IJCAR 2008. Proceedings, vol. 5195 of Lec-
ture Notes in Computer Science, pages 313–319. Springer, 2008.

10. F. Durán, S. Lucas, and J. Meseguer. Termination modulo combinations of equa-
tional theories. In S. Ghilardi and R. Sebastiani, eds., Frontiers of Combining
Systems, 7th Intl. Symposium, FroCoS 2009. .Proceedings, vol. 5749 of Lecture
Notes in Computer Science, pages 246–262. Springer, 2009.

11. F. Durán and J. Meseguer. A Church-Rosser checker tool for Maude equational
specifications. Technical Report ITI-2000-5, Dpto. de Lenguajes y Ciencias de la
Computación, U. de Málaga, Oct. 2000. Available at http://maude.cs.uiuc.edu.

12. F. Durán and J. Meseguer. Maude’s module algebra. Science of Computer Pro-
gramming, 66(2):125–153, April 2007.

13. F. Durán and J. Meseguer. ChC 3: A coherence checker tool for conditional
order-sorted rewrite Maude specifications. Available at http://maude.lcc.uma.

es/CRChC, 2009.
14. F. Durán and J. Meseguer. CRC 3: A Church-Rosser checker tool for conditional

order-sorted equational Maude specifications. Available at http://maude.lcc.

uma.es/CRChC, 2009.
15. F. Durán and J. Meseguer. A Church-Rosser checker tool for conditional order-

sorted equational Maude specifications. In P. C. Ölveczky, ed., 8th Intl. Workshop
on Rewriting Logic and its Applications, 2010.

16. F. Durán and P. C. Ölveczky. A guide to extending Full Maude illustrated with
the implementation of Real-Time Maude. In G. Roşu, ed., Proceedings 7th Intl.
Workshop on Rewriting Logic and its Applications (WRLA’08), Electronic Notes
in Theoretical Computer Science. Elsevier, 2008.

17. S. Escobar, J. Meseguer, and R. Sasse. Variant narrowing and equational uni-
fication. In G. Rosu, ed., Proc. 7th Intl. Workshop on Rewriting Logic and its
Applications (WRLA 2008), vol. 238 of Electronic Notes in Theoretical Computer
Science, pages 103–119. Elsevier, 2008.

18. J. Giesl and D. Kapur. Dependency pairs for equational rewriting. In Proceedings
of the 12th Intl. Conference on Rewriting Techniques and Applications (RTA’01),
vol. 2051 of Lecture Notes in Computer Science, pages 93–108. Springer, 2001.

19. J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of
equations. SIAM Journal of Computing, 15(4):1155–1194, 1986.

20. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96(1):73–155, 1992.

21. J. Meseguer. A logical theory of concurrent objects and its realization in the Maude
language. In G. Agha, P. Wegner, and A. Yonezawa, eds., Research Directions in
Concurrent Object-Oriented Programming, pages 314–390. The MIT Press, 1993.

22. E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.
23. G. Peterson and M. Stickel. Complete sets of reductions for some equational

theories. Journal of ACM, 28(2):233–264, 1981.
24. P. Viry. Equational rules for rewriting logic. Theoretical Computer Science,

285(2):487–517, 2002.


